Stochastic modified equations for the asynchronous stochastic gradient descent

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asynchronous Accelerated Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a widely used optimization algorithm in machine learning. In order to accelerate the convergence of SGD, a few advanced techniques have been developed in recent years, including variance reduction, stochastic coordinate sampling, and Nesterov’s acceleration method. Furthermore, in order to improve the training speed and/or leverage larger-scale training data...

متن کامل

Asynchronous Decentralized Parallel Stochastic Gradient Descent

Recent work shows that decentralized parallel stochastic gradient decent (D-PSGD) can outperform its centralized counterpart both theoretically and practically. While asynchronous parallelism is a powerful technology to improve the efficiency of parallelism in distributed machine learning platforms and has been widely used in many popular machine learning softwares and solvers based on centrali...

متن کامل

Asynchronous Stochastic Gradient Descent with Delay Compensation

With the fast development of deep learning, people have started to train very big neural networks using massive data. Asynchronous Stochastic Gradient Descent (ASGD) is widely used to fulfill this task, which, however, is known to suffer from the problem of delayed gradient. That is, when a local worker adds the gradient it calculates to the global model, the global model may have been updated ...

متن کامل

The Convergence of Stochastic Gradient Descent in Asynchronous Shared Memory

Stochastic Gradient Descent (SGD) is a fundamental algorithm in machine learning, representing the optimization backbone for training several classic models, from regression to neural networks. Given the recent practical focus on distributed machine learning, significant work has been dedicated to the convergence properties of this algorithm under the inconsistent and noisy updates arising from...

متن کامل

Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters.

A scalable adaptive optics (AO) control system architecture composed of asynchronous control clusters based on the stochastic parallel gradient descent (SPGD) optimization technique is discussed. It is shown that subdivision of the control channels into asynchronous SPGD clusters improves the AO system performance by better utilizing individual and/or group characteristics of adaptive system co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Inference: A Journal of the IMA

سال: 2019

ISSN: 2049-8764,2049-8772

DOI: 10.1093/imaiai/iaz030